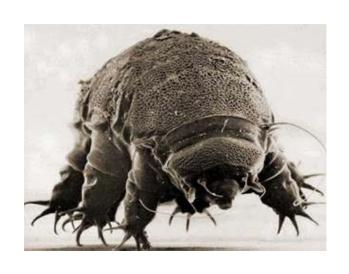
Organismos extremófilos: invertebrados dulceacuícolas

MSc. Cristhian Clavijo

Laboratorio de Genética Evolutiva de Modelos Animales (GEMA)
Sección Genética Evolutiva
Facultad de Ciencias, UdelaR
Museo Nacional de Historia Natural

Montevideo, 28 de junio de 2016

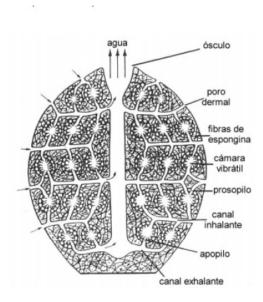

El agua dulce un ambiente ingrato

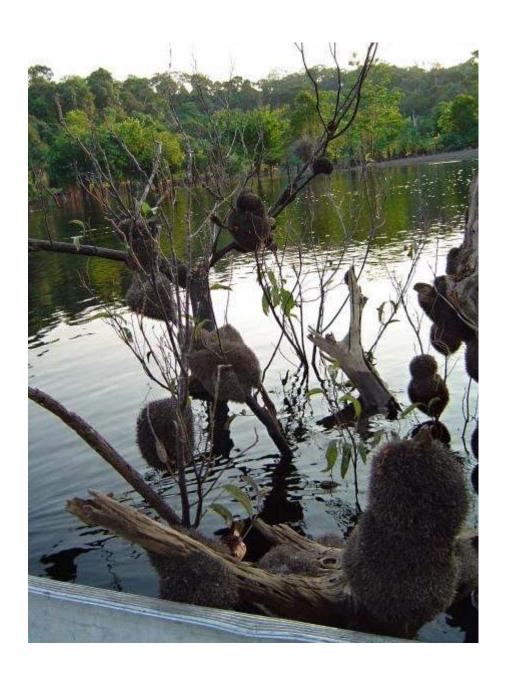
- Osmolaridad
- Concentración de oxígeno
- Concentración de nutrientes (Calcio)
- Corrientes
- Desecación completa

Alguna soluciones

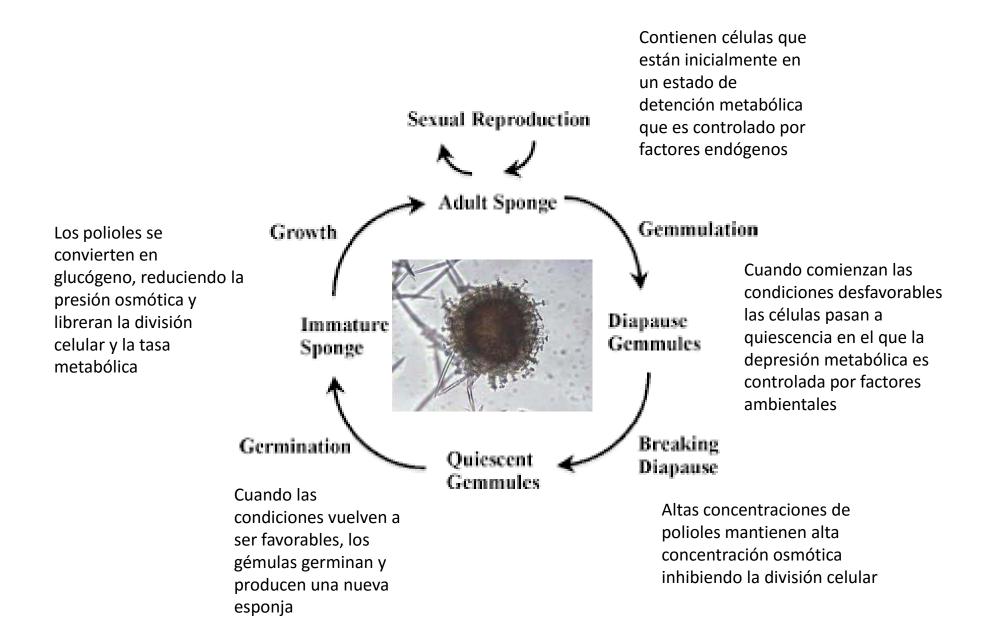
- Muy POCAS larvas planctónicas
- Cuidado parental
- Posibilidad de respiración atmosférica
- Estructuras de resistencia
- Resistencia de los individuos a la desecación
- Comportamiento

Algunos ejemplos




Poríferos

- Organismos "simples"
- Sin verdaderos tejidos
- Filtradores
- Gran capacidad de regeneración
- Estructuras de resistencia: Gémulas
- Células totipotentes: Arqueocitos



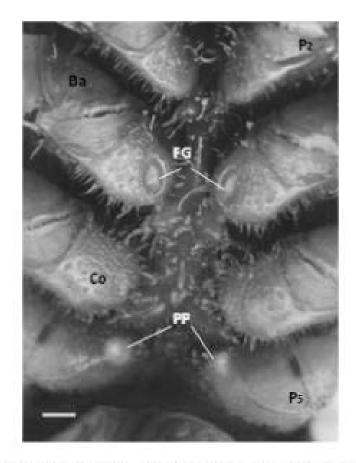
Parastacus

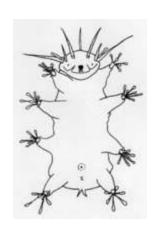
- Crustáceos decápodos
- Llamadas langostas de río
- En general no superan los 20 cm de longitud
- Viven en cuevas, a orillas de charcos, cursos y lagunas semipermanentes
- En Uruguay hay registradas cuatro especies
- Parastacus varicosus, P. defossus, P. saffordi, P. pilimanus

Parastacus

Noro & Buckup 2010

Intersexualidad




Fig. 1. Parastacus pilimanus (Von Martens, 1869). Sternal region and coxae of pereiopods 2 through 5, showing the coexistence of male and female gonopores. FG, female gonopore; PP, phallic papillae; Co, coxa; Ba, basis; P₂, second pair of pereiopods; P₅, fifth pair of pereiopods. Scale bar = 2.0 mm.

Cherax quadricarinatus

Tardígrados

- Relaciones filogenéticas aún inciertas: artrópodos, nematodos, onicóforos
- Tamaño hasta 1.200 μm
- Acuáticos, desde películas de agua sobre musgos a grandes profundidades
- Reproducción sexual y partenogénesis
- Criptobiosis: anhidrobiosis (desecación), criobiosis (bajas temperaturas), anoxibiosis (falta de oxígeno) u osmobiosis (cambios en la salinidad)
- También resisten al vacío

¿Cómo lo pueden lograr?

- A medida que el ambiente va cambiando, el animal contrae y retrae la cabeza y las patas, tomando la forma de barril o el estado conocido como tonel
- Remplazan el agua por componentes polihidroxílicos, como la trealosa. Esto estabiliza la membrana y protege las macromoléculas (incluido el ADN)
- Se sospecha que tienen un eficiente sistema de reparación del ADN aunque su naturaleza aún es desconocida
- Estos sistemas de reparación podrían ser la clave para la cura de enfermedades degenerativas y algunos tipos de cáncer